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controls showed that the onset of isomerization coincided with 
the beginning of adduct formation. Under the same conditions 
without any triyne present, starting material was recovered 
unchanged. It is tempting to associate the biradicaloids17 3 
and/or 4 with the catalytically active species in the maleate— 
fumarate interconversion, although clearly other radical 
mechanisms are possible.18 Clarification of this point will have 
to await further studies. 

Current efforts are directed toward the isolation of 2, the 
design of labeling experiments to identify the nature of the 
precursor to 7, and the use of 1 as a template for organometallic 
transformations. 
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Topomerization of the (Z,£)-l,3-Diphenyl-2-cyanoallyl 
Anion 

Sir: 

Three points are of interest in connection with the topom­
erization of allyl anions: the geometric stability of the allyl 
anion, its ionic character, and the mechanism of the topom­
erization. The investigation of the (Z,£')-l,3-diphenyl-2-
cyanoallyl anion (1) together with semiempirical and ab initio 
calculations provides pertinent results. 

Ring opening of 2-cyano-m-2,3-diphenylcyclopropyl anion 
(2) (or of the trans isomer'-2) afforded 1 (Scheme I), which 
was identified by its NMR spectrum at 5 0 C. Especially the 
high-field absorption of the phenyl protons in para position at 
S 6.5 ppm is diagnostic of the ionic character3"6 of 1 (sodium 
salt in Me2SO). The (Z,E) configuration7 is revealed by the 
different absorptions of H1 and H 3 at 5 5.4 and 4.65 ppm, re­
spectively.8 

On warming, a broadening and, at 62 ± 3 0 C, the coales­
cence of the signals of H ' and H 3 are observed. This is indic­
ative of a process that exchanges the environments of these 
hydrogens. From a lineshape analysis9 the following kinetic 
data were calculated: ^620C= 100 s - ' ; AG*62°c = 16.5 kcal/ 
mol; AH* = 12.5 ± 4.0 kcal/mol; AS* = - 1 2 ± 8 eu. Con­
cerning the mechanism of this exchange process, the following 
cases have to be considered. 

(1) The reaction proceeds via cyclopropyl anion 2 as an 
intermediate (Scheme I). This is attractive since the thermal 
cis-trans isomerization of butadiene is dominated by a valence 
isomerization via cyclobutene.10 Likewise, according to ab 
initio calculations'' the 2-methylallyl cation should prefer to 
topomerize via the 1-methylcyclopropyi cation rather than by 
rotation around the allyl cation bond. 

Scheme I 
CN Me+ 

Me CN 

H j / ^ZN x - j /Ph Topomeriia-tion 

Ph H 

1 ^ v 
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Table I. Calculation of the Activation Energy (kcal/mol) for 
Conrotatory Ring Closure and Single and Synchronous Double 
Rotation of the Parent Allyl Anion 

Conrotation 
Single 

rotation 

MINDO/3 
STO-3G 

41 
78 

11 
29 

Double 
rotation 

67 
133 

H CN 

In the case of the allyl anion 1 a decision can be made by 
means of the kinetics of the conrotatory ring opening 

&262°c = 1 -45 s-1.1-2 Thus, at 62 0 C, ring opening of 2 is ca. 
70 times slower than the exchange process. Furthermore, since 
the equilibrium 2 ^ 1 lies far on the side of 1 (1:2 > 20:112), 
ring closure of the allyl anion 1 is >1400 times slower than 
topomerization. Therefore, cyclopropyl anion 2 is not an in­
termediate. The topomerization must occur via bond rotation. 

Although it is not known whether this finding corresponds 
to the general case, the following arguments can be adduced 
to support the contention that the cyclopropyl anion is by­
passed in other cases as well, (a) MINDO/3 1 3 and STO-3G14 

calculations of the parent allyl anion also favor stepwise single 
rotation to ring closure (Table I). (b) Electron stabilizing 
groups at C2 of the allyl anion should strongly favor topom­
erization via the cyclopropyl anion. As shown above, this, at 
least, is not the case with allyl anion 1 bearing a cyano group 
at C2. (c) Hydrogen at C2 of the allyl anion should, on the other 
hand, prevent topomerization via the cyclopropyl anion be­
cause no clearcut example of a 1-H-substituted cyclopropyl 
anion is known where ring opening occurs.1-2 Since there exist 
several 2-H-substituted allyl anions which topomerize,416 the 
cyclopropyl anion is also not an intermediate in those cases. 

(2) The rotation leading to topomerization of 1 is proton 
catalyzed and proceeds through undetectable concentrations 
of ?ra/w-a-benzylcinnamonitrile. This is excluded since no 
deuterium is incorporated into 1 in Me2SO-a?6 under conditions 
of fast topomerization. 

(3) The gegenion Me + participates in the topomerization. 
In that case the rate should depend on the nature of Me+ and 
the solvent.4'6,16-17'22 When we measured the N M R spectrum 
of 1 with Li+ , Na + , and K+ , respectively, in Me2SO and with 
Li+ in tetrahydrofuran (THF),1 8 not only the chemical shifts 
in the "low-temperature" spectrum at 5 0 C but also the tem­
perature dependence were the same. Therefore, 1 should exist 
in the ground state as a solvent separated ion pair.19 Likewise, 
the rotation reaction should take place in the anion itself as part 
of the separated ion pair, and not in a less ionic species (i.e., 
contact ion pair).19 The transition state is thus well described 
by 4 with a charge distribution analogous to that of the benzyl 
anion in a separated ion pair. This is in accordance with ob­
servations of Fraenkel, Russel, and Chen17 who reported that 
benzyl anions exist as solvent separated ion pairs under com­
parable conditions. 

(4) Since synchronous double rotation directly transforming 
1 into 1 as a further possibility is not at all consistent with the 
small experimental barrier (AG*62°c = 16.5 kcal/mol) and 
the result of the calculations (Table I), the topomerization 
must occur by stepwise interchange of substituents at the 
terminal carbon atoms of 1 via (Z1Z)-l,3-diphenyl-2-cy-
anoallyl anion (3) as an intermediate (Scheme I). The exis­
tence of the (Z.Z)-allyl anion 3 in small concentrations in the 
presence of 1 is supported by trapping reactions with olefins 
like acenaphthylene.1 After protonation two cycloadducts 5 
and 6 were isolated in overall 91% yield with phenyl groups at 
C7 and C9 exclusively in cis position (Scheme II). 

We thus conclude that the topomerization of 1 proceeds via 
stepwise rotation around the allyl anion bonds and not via cy­
clopropyl anion 2,21 with the gegenion playing no role. Fur­
thermore, one can extrapolate that the cyclopropyl anion 
should also be by-passed in other cases of allyl anion topom-
erizations.4-6'16'20'22 
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